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1. 

A dynamic vibration absorber is a passive device which is used to reduce excessive
vibrations in a mechanical system. The absorber typically consists of an inertial device
which changes the dynamic response of the original vibrating system over a certain
frequency range. The absorbing device may be a linear mass–spring oscillator, a pendular
or rotary oscillator, a fluid or granular system, or a distributed elastic structure. The
concept of a vibration absorber was first developed in 1902 by Frahm, who designed a
fluid tank system for the reduction of rolling motion in the German ships Bremen and
Europa [1]. The theory and design of vibration absorbers for many technical applications
is discussed in reference [2].

Although a vibration absorber can produce a reduction in the vibration amplitude of
the original mechanical system, this improvement is obtained at the expense of large
amplitude mechanical vibrations in the absorber. This large amplitude oscillation is one
of the major problems in the design of practical absorber systems. Space and weight
limitations or structural failures often limit the performance of the vibration absorber.

In this letter, we present a simple experimental demonstration of an electromechanical
vibration absorber. The mechanical absorber system is replaced by an electromechanical
transducer and a resonant electrical circuit. It is shown that by tuning the electrical
circuit properly, the vibration amplitude of the original vibrating system to which the
absorber is attached may be reduced significantly. This reduction is accompanied by large
electrical oscillations in the resonant circuit, instead of the undesirable large amplitude
mechanical oscillations in the conventional absorber. A mathematical analysis of the
electromechanical vibration absorber is given, and some initial experimental results are
presented.

A vibration absorber in which piezoelectric materials are used in conjunction with a
resonant electrical circuit is discussed in references [4] and [5]. These piezoelectric systems
are applicable to the reduction of bending vibrations, while the approach given here, in
which an electromechanical voice coil transducer is used instead of a piezoelectric material,
allows a greater variation of absorber parameter values, and may be applied to a much
larger class of machine and structural vibration problems. A recent magnetorestrictive
device for vibration reduction is described in reference [6].

2. 

An initial model for the electromechanical vibration absorber is shown in Figure 1. The
primary vibrating system is modelled as a single-degree-of-freedom oscillator, with mass
m, spring stiffness k and damping coefficient b. The absorber consists of a coil, a fixed
permanent magnet and an RLC electrical circuit connected in series with the coil. The coil
is fixed to the mass m and moves in an annular gap in the permanent magnet. The purpose

0022–460X/97/090551+06 $25.00/0/sv960681 7 1997 Academic Press Limited



e

i
+ Fixed magnet

R

C

L

–

k F b

M
x

   552

of the absorber is to reduce the vibration amplitude of the mass m when the mass is driven
by the external force f(t).

The dynamic equations for the displacement x(t) of the mass and the current i(t) in the
coil are

m
d2x
dt2 + b

dx
dt

+ kx+Ti= f, L
d2i
dt2 +R

di
dt

+
1
C

i−T
d2x
dt2 =0. (1, 2)

The quantity T is the transducer constant which relates the current in the coil to the
magnetic force on the coil. In the simplest transducer model [3], the transducer constant
is given by

T=2pnrB, (3)

where n is the number of turns in the coil, r is the radius of the coil, and B is the uniform
radial magnetic field strength in the annular gap. As discussed in reference [3], the
transducer constant T also relates the electrical potential e across the terminals of the coil
to the velocity of the coil with respect to the permanent magnet.

To analyze the coupled equations for the displacement x(t) and the current i(t), we
assume that the external force f(t) is sinusoidal, and write

f(t)=F(v) ejvt, x(t)=X(v) ejvt, i(t)= I(v) ejvt, (4–6)

where X(v) and I(v) are the steady state complex amplitudes of the displacement and
current, respectively. After substitution of equations (4), (5) and (6) into equations (1) and
(2), the steady state amplitudes X(v) and I(v) can be obtained in the form

X=
(F/k)(1− r2

ev
2/v2

1 + j2zerev/v1)
(1−v2/v2

1 + j2z1v/v1)(1− r2
ev

2/v2
1 + j2zerev/v1)− r2

Tv
2/v2

1
, (7)

I=
(F/T)r2

Tv
2/v2

1

(1−v2/v2
1 + j2z1v/v1)(1− r2

ev
2/v2

1 + j2zerev/v1)− r2
Tv

2/v2
1
, (8)

Figure 1. A model of the electromechanical vibration absorber.
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where

v2
1 = k/m, v2

e =1/LC, v2
T = k/T 2C, (9–11)

z1 =v1b/2k, ze =veRC/2, re =v1/ve , rT =v1/vT . (12–15)

By choosing the parameters of the absorber appropriately, it is possible to make the
vibration amplitude of the mass m smaller, in some frequency bands, than it would be if
the absorber were not present. In Figure 2 is shown the dimensionless amplitude =X/(F/k) =
as a function of the dimensionless forcing frequency v/v1 for the numerical values re =1,
rT =1, z1 =0·1 and ze =0·1. The dashed line shows the amplitude =X/(F/k) = when the
absorber is not present (or, equivalently, when the transducer constant T is zero), and the
solid line shows the amplitude =X/(F/k) = with the absorber. By choosing re =1, the
resonant electrical circuit is tuned to the natural frequency of the original vibrating system,
and the resonant peak at v/v1 =1 is reduced drastically. Figure 2 closely resembles the
corresponding result for a conventional inertial vibration absorber; the resonant electrical
circuit here plays the role of the tuned mechanical oscillator in an inertial absorber. In
Figure 3 is shown the dimensionless current amplitude =I/(F/T) = for the same numerical
parameter values used in Figure 2. The current amplitude is large in the region where the
vibration amplitude of the mass m is reduced, but it may be easier in may situations to
accommodate the large current amplitude in the coil than to accommodate the
corresponding large amplitude mechanical oscillation of the secondary mass in an inertial
absorber.

The two new resonant peaks which the absorber introduces in Figure 2 may be reduced
by increasing the damping in the resonant electrical circuit. In Figure 4 is shown the
dimensionless amplitude =X/(F/k) = as a function of the dimensionless forcing frequency
v/v1 for the parameter values re =1, rT =1, z1 =0·1 and ze =0·5. The amplitude reduction

Figure 2. The dimensionless displacement amplitude =X/(F/k) = as a function of the dimensionless forcing
frequency v/v1 for re =1, rT =1, ze =0·1 and z1 =0·1 (solid line). The dashed line shows the response of the
system for T=0 (no absorber).
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Figure 3. The dimensionless current amplitude =I/(F/T) = as a function of the dimensionless forcing frequency
v/v1 for re =1, rT =1, ze =0·1 and z1 =0·1.

Figure 4. The dimensionless displacement amplitude =X/(F/k) = as a function of the dimensionless forcing
frequency v/v1 for re =1, rT =1, ze =0·5 and z1 =0·1 (soild line). The dashed line shows the response of the
system for T=0 (no absorber).

at the original resonant peak v/v1 =1 is not as great as in Figure 2, but the two new
resonant peaks in Figure 2 are substantially reduced. In Figure 5 is shown the
dimensionless current amplitude =I/(F/T) = for the same parameter values as used in
Figure 4.
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Figure 5. The dimensionless current amplitude =I/(F/T) = as a function of the dimensionless forcing frequency
v/v1 for re =1, rT =1, ze =0·5 and z1 =0·1.

Figure 6. A schematic of the experimental set-up of the vibrating cantilever.

3. 

As can be observed in Figure 6, the apparatus consisted of a mild steel strip of width
0·05 m and thickness 0·0015 m. The strip was clamped at one end, thereby rendering it a
cantilever. A sinusoidal driving force was applied to the cantilever by attaching a small
dc motor with a lead rod attached eccentrically to its rotating shaft. The damping ratio
of the unforced cantilever–motor system was measured to be z110·1. A piezoelectric strip
(AMP Inc., Model (ST1-028k) was placed on the surface of the cantilever in order to
monitor and measure the vibration amplitude caused by the rotating eccentric mass.

A coil of diameter 0·0048 m and inductance 37·5 mH was attached to the bottom of the
cantilever so that the coil oscillated between two permanent magnets (B1 4000 Gauss),
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Figure 7. The experimentally obtained values of the cantilever displacement amplitude as a function of forcing
frequency with and without the absorber. ×, Value for system without absorber; w, value for system with
absorber.

approximating the voice coil arrangement assumed in the mathematical model. The coil
was connected in series with an RLC circuit. A set of tests were performed in which the
resonance of the electrical circuit was tuned to the natural frequency of the cantilever, and
the driving frequency of the motor was swept through a range which included the first
natural frequency of the unforced cantilever–motor system. The experimentally obtained
vibration amplitude of the cantilever with and without the electromechanical absorber is
shown in Figure 7. The data show a dramatic decrease in vibration amplitude near the
beam resonance, as predicted by the theory. The antiresonance of the absorber system
predicted by the analysis could not be observed with the present experimental system. The
load reduction effect of the absorber was so strong that the speed of the motor increased
suddenly when the antiresonance was approached. Further experiments with a more
precisely controlled force input are expected to give an even larger vibration reduction and
better agreement with the theoretical results.
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